离子液体对纤维素的溶解

纤维素是世界上最丰富的可再生能源,可以从原始生物原料中提取纤维素,但是由于纤维素是由D-葡萄糖以β-1 ,4 糖苷键组成的链状高分子化合物,纤维素中存在大量氢键,所以它的晶体结构非常牢固,这也是纤维素在一般条件下很难溶解于常见溶剂的主要原因。传统溶解纤维素方法,包括铜氨液和磺酸盐,通常比较繁琐或者成本高,需要特殊溶剂,通常是具有高的离子强度和在相对苛刻条件进行。1934年首次发现在离子液体中可以溶解纤维素,但是由于当时尚未建立离子液体概念,而被认为不存在实际应用。直到后来,Rogers和他的研究组进行了大量研究,无论精制或原始的纤维素均可以溶解在亲水性的离子液体中。利用离子液体溶解纤维素,践行了绿色化学的两条原则:利用环境友好的溶剂和生物可再生原料。用于溶解纤维素的室温离子液体主要是 N-甲基咪唑阳离子(BMIM和AMIM),阴离子主要包括Cl-、 HCO2-、 CH3SO4-和 Me2C6H3SO3-等,其分子结构如图6所示,研究发现从纤维素提取和纤维素溶解来说包含有甲基硫酸盐,氢硫酸盐和甲磺酸酯阴离子的离子液体是最高效的[14]。双烷基咪唑氯化物离子液体中高浓度和高活性的Cl-有效地破坏了纤维素中的氢键体系,使纤维素溶解于离子液体。另一方面,离子液体可以利用水化的羟基和自身电荷提供电子给体受体配合物从而破坏纤维素的氢键体系[15]。微波加热可以加速溶解过程,若向离子液体中加入水,乙醇或者丙酮,纤维素又可以很容易的再生。通过改变再生过程,可以制得一系列不同形貌的纤维素,同时纤维素的结晶度也可以调节,从无定形到晶体。然后,离子液体通过蒸发,离子交换,蒸馏,反渗透,盐析等方法就可以被重复利用。

Bookmark the permalink.

Comments are closed.